

Workshop Info

https://ikosaeder.cosy.sbg.ac.at/dihworkshop/#segmentation/

What is segmentation?

Person Bicycle Background

Image from [1]

• Medical & Biomedical Imaging

- Locating tumors and other pathologies
- Diagnosis and study of anatomical structure
- Cell segmentation

Images from [11, 12]

• Autonomous vehicle and transportation

• Street scene segmentation

Image from [13]

- Remote Satellite Sensing
- Medical Health Care / Industrial

Images from [14, 15]

• Biometrics

- Iris Off-angle Segmentation
- Finger segmentation for vein recognition

Images from [16, 17]

Types of Segmentation

Semantic segmentation

- Assigning category label to each pixel
- Grass, sky, road

(a) Image

(b) Semantic Segmentation

(c) Instance Segmentation

(d) Panoptic Segmentation

Image from [18]

Instance segmentation

- Detect each object and delineate it
- Car, person, chair

"Handcrafted" Methods for Segmentation

- Threshold-Based segmentation
- Edge-Based segmentation
- Region-Based segmentation
- Graph-Based techniques
- Clustering-Based techniques
- Watershed techniques
- Active Contour techniques

• Deep-Learning-Based (Convolutional Neural Network, CNN) Segmentation

We remember: CNN Basics

- Input Image
- Convolution
- Pooling
- Ground Truth
- Loss Function

Convolution Neural Network (CNN)

Image from [4]

Representing Input & Segmentation Map

RGB = height x width x 3 Grey = height x width x 1

Seg. Map = height x width x 1

or height x width x #classes

Semantic Segmentation: The Task

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Semantic Segmentation

Full image

Impossible to classify without context

Semantic Segmentation Idea: Sliding Window

Semantic Segmentation Idea: Sliding Window

Semantic Segmentation Idea: Sliding Window

reusing shared features between overlapping patches

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size to be the same as input size.

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!

be very expensive ...

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

In-Network upsampling: "Max Unpooling"

1	1	2	2
1	1	2	2
3	3	4	4

Input: 2 x 2

Output: 4 x 4

"Bed of Nails"

1

3

2

4

1	0	2	0
0	0	0	0
3	0	4	0
0	0	0	0

Input: 2 x 2

Output: 4 x 4

In-Network upsampling: "Max Unpooling"

Max Unpooling Use positions from pooling layer

Corresponding pairs of downsampling and upsampling layers

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4

Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4

Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4

Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Output: 2 x 2

We can interpret strided convolution as "learnable downsampling".

3 x 3 **transposed** convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

3 x 3 **transposed** convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

3 x 3 **transposed** convolution, stride 2 pad 1

Filter moves 2 pixels in the <u>output</u> for every one pixel in the <u>input</u>

Stride gives ratio between movement in output and input

Input: 2 x 2

Output: 4 x 4

Often denoted "deconvolution" (bad)

Images from [3]

Learnable Upsampling: 1D Example

Output

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Stride = 2

Convolution as Matrix Multiplication (1D Example)

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$x \quad y \quad z \quad 0 \quad 0 \quad 0$$

$$0 \quad 0 \quad x \quad y \quad z \quad 0$$

$$\begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, <u>stride=2</u>, padding=1

Convolution as Matrix Multiplication (1D Example)

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, <u>stride=2</u>, padding=1

Transposed convolution multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

 $\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$

Example: 1D transposed conv, kernel size=3, <u>stride=2</u>, padding=0

Downsampling: Pooling, strided convolution

Input:

3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling: Unpooling or strided transposed convolution

Predictions: H x W

What to do at the end?

• Pixel-wise Softmax for class prediction + pixel-wise cross entropy for loss

Pixel-wise loss is calculated as the log loss, summed over all possible classes

 $-\sum_{classes} y_{true} \log(y_{pred})$

This scoring is repeated over all **pixels** and averaged

Target for the corresponding pixel

Image from [1]

Evaluation Metrics for Semantic Segmentation

• Pixel Accuracy

PA = Correctly Classified Pixels All Pixels

• Intersection over Union: IoU (Jaccard Index)

 $\mathsf{IoU} = \frac{\|A \cap B\|}{\|A \cup B\|}$

• Dice Coefficient

Dice = $\frac{2 \|A \cap B\|}{\|A\| + \|B\|}$

Evaluation Metrics for Semantic Segmentation

Images from [9]

"SegNet", Badrinarayanan et al. 2015 [6]

4

- Encoder-Decoder Architecture
- 13 Conv Layers from VGG16 Architecture
- Max unpooling

Fully Connected Network "FCN", Long et al. 2014 [7]

Ground truth target

Predicted segmentation

Ground truth target

Predicted segmentation

"U-Net", Ronneberger et al. 2015 [8]

- Biomedical Area = Few Annotated Data
- Encoder-Decoder Architecture
- Skip Connections (cropped)

Instance Segmentation

• Detection Based Instance Segmentation (Mask R-CNN)

2 stages instance segmentation

• Single Shot Instance Segmentation (YOLACT)

1 stage instance segmentation

Images from [19]

Mask R-CNN

- Backbone
- Region Proposal Network (RPN)
- Rol Align = Interpolate Region Proposals to fixed size
- Nets with 3 outputs (mask, bounding box, image class)

Image from [20]

YOLACT (You only look at coefficients)

- Backbone (FPN + ResNet)
- "Protonet" yields k "prototypes"
- Mask Coefficients (prediction head)
- Mask Assembly

Image from [21]

State of the Art: COCO Segmentation Challenge

98	PolarMask (ResNeXt-101-FPN)	32.9%	55.4%	33.8%	15.5%	35.1%	46.3%	×	PolarMask: Single Shot Instance Segmentation with Polar Representation	0	Ð	2019	FPN ResNeXt
99	PolarMask (ResNet-101-FPN)	30.4%	51.9%	31%	13.4%	32.4%	42.8%	×	PolarMask: Single Shot Instance Segmentation with Polar Representation	0	Ð	2019	FPN ResNet
100	YOLACT (ResNet-50-FPN)	29.8%						×	YOLACT: Real-time Instance Segmentation	0	Ð	2019	FPN ResNet
101	FCIS +OHEM	29.2%	49.5%		7.1%	31.3%	50.0%	×	Fully Convolutional Instance-aware Semantic Segmentation	0	Ð	2016	
102	MultiPath Network	25.0%						×	A MultiPath Network for Object Detection	0	Ð	2016	

Screenshot from [22]

Instance Segmentation on COCO test-dev

General Problems

- Data Annotation cumbersome
- Architectures are kind of a blackbox
 - often unclear what ist doing
 - Explainable AI (XAI)
- Bigger models need lot of memory (even for inference)
 - Smartphones therefore often need "lighter" models

Thank You

Sources:

- [1] <u>https://www.jeremyjordan.me/semantic-segmentation/</u>
- [2] <u>http://cs231n.stanford.edu/slides/2022/lecture_9_jiajun.pdf</u>
- [3] <u>https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11</u>
- [4] <u>https://www.analyticsvidhya.com/blog/2022/03/basics-of-cnn-in-deep-learning/</u>
- [5] <u>https://arxiv.org/pdf/1505.04366.pdf</u>
- [6] <u>https://arxiv.org/pdf/1511.00561.pdf</u>
- [7] <u>https://arxiv.org/pdf/1411.4038.pdf</u>
- [8] <u>https://arxiv.org/pdf/1505.04597.pdf</u>
- [9] <u>https://www.jeremyjordan.me/evaluating-image-segmentation-models/</u>
- [10] <u>https://blog.roboflow.com/mask-rcnn/</u>

Sources:

- [11] <u>https://torchio.readthedocs.io/transforms/transforms.html</u>
- [12] <u>http://celltrackingchallenge.net/annotations/</u>
- [13] <u>https://towardsdatascience.com/review-pspnet-winner-in-ilsvrc-2016-</u> <u>semantic-segmentation-scene-parsing-e089e5df177d</u>
- [14] <u>https://medium.com/@ilias_mansouri/part-1-introduction-to-computer-vision-9a02a393d86d</u>
- [15] <u>http://dx.doi.org/10.25080/Majora-4af1f417-015</u>
- [16] <u>https://wavelab.at/papers/Jalilian21b.pdf</u>
- [17] <u>https://wavelab.at/papers/Prommegger22a.pdf</u>
- [18] <u>https://www.v7labs.com/blog/image-segmentation-guide#panoptic-segmentation</u>
- [19] <u>https://www.reasonfieldlab.com/post/instance-segmentation-algorithms-overview</u>

Sources:

- [20] <u>https://blog.roboflow.com/mask-rcnn/</u>
- [21] <u>https://arxiv.org/pdf/1904.02689.pdf</u>
- [22] <u>https://paperswithcode.com/sota/instance-segmentation-on-coco</u>