
Generative Adversarial Networks and Image2Image Translation
University of Salzburg Deep Learning Online Course Series

Christof Kauba and Georg Wimmer

Universität Salzburg

Department of Computer Sciences

A-5020 Salzburg, Austria

16th October 2023

Kauba C., Wimmer G.: GANs and Image2Image Translation 1/96

Table of Contents

1 Introduction
GAN Overview
GAN Literature
Generative Modelling

2 General GAN Architecture

3 Caveats and Challenges with GANs

4 Conditional GANs (CGAN)

5 CycleGAN

6 CoupledGAN

7 General Advice and Caveats

Kauba C., Wimmer G.: GANs and Image2Image Translation 2/96

Outline

1 Introduction
GAN Overview
GAN Literature
Generative Modelling

2 General GAN Architecture

3 Caveats and Challenges with GANs

4 Conditional GANs (CGAN)

5 CycleGAN

6 CoupledGAN

7 General Advice and Caveats

Kauba C., Wimmer G.: GANs and Image2Image Translation 3/96

What is a GAN?

A generative adversarial network (or short: GAN) is an approach to generative modelling
using deep learning methods (more on generative modelling shortly)

Generative: Learning a generative model
Adversarial: Trained in an adversarial setting (game theoretic approach)
Network: Based on Deep Neural Networks

GANs were �rst introduced by Goodfellow et al. in 2014: Generative Adversarial Nets

Have the ability to generate realistic examples across a range of problem domains:

image to image translation tasks, e.g. translating daylight to night pictures
generating photorealistic photos of objects, scenes and people
image super-resolution
overcoming limited data with the help of GAN generated data

GANs revolutionized generative modelling by producing crisp, high-resolution images

Kauba C., Wimmer G.: GANs and Image2Image Translation 4/96

GAN Examples (1)

Kauba C., Wimmer G.: GANs and Image2Image Translation 5/96

GAN Examples (2)

Which of the following images is computer generated?

Kauba C., Wimmer G.: GANs and Image2Image Translation 6/96

GAN Examples (3)

Kauba C., Wimmer G.: GANs and Image2Image Translation 7/96

Literature - Papers I

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. Generative adversarial nets, NIPS (2014).

Goodfellow, Ian NIPS 2016 Tutorial: Generative Adversarial Networks, NIPS (2016).

Radford, A., Metz, L. and Chintala, S., Unsupervised representation learning with

deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
(2015)

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. Improved
techniques for training gans. NIPS (2016).

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. InfoGAN:
Interpretable Representation Learning by Information Maximization Generative Adversarial
Nets, NIPS (2016).

Zhao, Junbo, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial
network. arXiv preprint arXiv:1609.03126 (2016).

Mirza, Mehdi, and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014).

Kauba C., Wimmer G.: GANs and Image2Image Translation 8/96

Literature - Papers II

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. Image-to-image translation with

conditional adversarial networks. arXiv preprint arXiv:1611.07004. (2016).

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. Generative
adversarial text to image synthesis. JMLR (2016).

Antipov, G., Baccouche, M., & Dugelay, J. L. Face Aging With Conditional

Generative Adversarial Networks. arXiv preprint arXiv:1702.01983. (2017).

Liu, Ming-Yu, and Oncel Tuzel. Coupled generative adversarial networks. NIPS (2016).

Denton, E.L., Chintala, S. and Fergus, R., 2015. Deep Generative Image Models using a
Laplacian Pyramid of Adversarial Networks. NIPS (2015).

Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., &
Courville, A. Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016).

Kauba C., Wimmer G.: GANs and Image2Image Translation 9/96

Literature - Books

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Brownlee, Jason. Generative adversarial networks with python: deep learning generative
models for image synthesis and image translation. Machine Learning Mastery, 2019.

Foster, David. Generative deep learning: teaching machines to paint, write, compose, and
play. O'Reilly Media, 2019.

Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O'Reilly Media, Inc., 2019.

Ketkar, Nikhil, and Eder Santana. Deep learning with Python. Vol. 1. Berkeley, CA:
Apress, 2017.

Buduma, Nikhil, and Nicholas Locascio. Fundamentals of deep learning: Designing
next-generation machine intelligence algorithms. O'Reilly Media, Inc., 2017.

Osinga, Douwe. Deep learning cookbook: practical recipes to get started quickly. O'Reilly
Media, Inc., 2018.

Michelucci, Umberto. Applied Deep Learning. Apress, 2018.

Kauba C., Wimmer G.: GANs and Image2Image Translation 10/96

Literature - Online

A gentle introduction to GANs: https://machinelearningmastery.com/
what-are-generative-adversarial-networks-gans/

Online Version of the Book �Deep Learning� by Ian Goodfellow and Yoshua Bengio and
Aaron Courville: https://www.deeplearningbook.org/

Various slides by Ian Goodfellow: https://www.iangoodfellow.com/slides/

Google Online Course - GAN Introduction:
https://developers.google.com/machine-learning/gan

A list of all named GANs: https://github.com/hindupuravinash/the-gan-zoo

Tips and tricks to make GANs work: https://github.com/soumith/ganhacks

Kauba C., Wimmer G.: GANs and Image2Image Translation 11/96

https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://www.deeplearningbook.org/
https://www.iangoodfellow.com/slides/
ttps://developers.google.com/machine-learning/gan
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/soumith/ganhacks

From Predictive to Generative Modelling (1)

Predictive modelling is a typical machine
learning task involving using a model to
make a prediction

Training the model requires a training
dataset, comprised of multiple samples
(training samples)

Each sample has input variables (X) and
output class labels (y)
Model is trained by showing examples of
inputs, having it predict the output labels,
comparing the predicted to the real labels
and correcting the model to make the
outputs more correct

This is typical supervised learning task

Kauba C., Wimmer G.: GANs and Image2Image Translation 12/96

From Predictive to Generative Modelling (2)

In the previous CNN approaches we mainly covered
discriminative/predictive models:

E.g. given an image X , we can predict a label y
Hence, it estimates P(y |X)

Discriminative modelling has several key limitations

We cannot model P(X), i.e. the probability of seeing a certain
image
Hence, we cannot sample from P(X), i.e. we cannot generate
new images

Generative models are able to cope with the above mentioned
problems

Can model P(X)
Thus, generate new images which are drawn according to P(X)

Kauba C., Wimmer G.: GANs and Image2Image Translation 13/96

From Predictive to Generative Modelling (3)

The second paradigm to learn a model, used in generative modelling, is to give the model
only the input variables (X) with the problem not having any output variables (y)

The model is constructed by extracting or summarising the patterns in the input data

Generative models tackle a more di�cult task than analogous discriminative models.
Generative models have to model more

There is no correction of the model as it is not predicting anything

This lack of correction is in general referred to as unsupervised learning

Kauba C., Wimmer G.: GANs and Image2Image Translation 14/96

Generative Modelling (1)

In generative modelling our aim is to train a network that models a distribution, e.g. a
distribution over images, and is then able to generate new images that are drawn from this
distribution

Unsupervised learning task in machine learning that involves automatically discovering and
learning regularities or patterns in given input data
Such that the model can be used to generate new examples that could have been drawn from
the original data set

E.g. a generative model for images might capture correlations like "things that look like
boats are probably going to appear near things that look like water". These are very
complicated distributions.

In contrast, a discriminative model might learn the di�erence between "sailboat" or "not
sailboat" by just looking for a few tell-tale patterns. It could ignore many of the
correlations that the generative model must get right.

If we look at the �data space�:

Discriminative models try to draw boundaries in the data space
Generative models try to model how data is placed throughout the space

Kauba C., Wimmer G.: GANs and Image2Image Translation 15/96

Generative Modelling (2)

A straight forward way to judge the quality of the trained model is to sample from it
There are 4 modern approaches to generative modelling:

Generative Adversarial Networks

Reversible architectures
Autoregressive models
Variational autoencoders

All those approaches have di�erent advantages and disadvantages

We will focus on GANs in the following

Kauba C., Wimmer G.: GANs and Image2Image Translation 16/96

Outline

1 Introduction
GAN Overview
GAN Literature
Generative Modelling

2 General GAN Architecture

3 Caveats and Challenges with GANs

4 Conditional GANs (CGAN)

5 CycleGAN

6 CoupledGAN

7 General Advice and Caveats

Kauba C., Wimmer G.: GANs and Image2Image Translation 17/96

GAN Overview

GANs are a clever way of training a generative model by framing the problem as a
supervised learning problem

Based on two sub-models:

Generator model: trained to generate new examples
Discriminator model: tries to classify examples as either real (from the original data) or fake
(generated)

The two models are trained in a zero-sum game, adversarial, until the discriminator model
is fooled about half of the time (game theoretic scenario)

Today, most GANs are based on the DCGAN (Deep Convolutional Generative Adversarial
Network) architecture

Kauba C., Wimmer G.: GANs and Image2Image Translation 18/96

Deriving the GAN Architecture

Based on the idea of generative modelling, we will brie�y go through the original ideas and
derive the basic GAN architecture

The basic task we want to do is generate samples belonging to a particular data
distribution Pdata(x)

Hence, use a distribution PG (x ; θ), parametrised by θ to approximate it:

Can e.g. PG (x ; θ) can be a Gaussian Mixture Model, with the parameter θ containing the
means and variances of the Gaussian distributions
Our goal is to �nd/optimise θ such that PG (x ; θ) is as close as possible to Pdata(x)
(resembles the original distribution)

If we have the original data, we can just sample {x1, x2, ..., xm} from Pdata(x)

The likelihood of generating these xi s under PG is: L =
∏

i=1...m
PG (xi ; θ)

We can then �nd the optimal θ̂ by maximising L

This is called the Maximum Likelihood Estimation

Kauba C., Wimmer G.: GANs and Image2Image Translation 19/96

KL (Kullback-Leibler) Divergence

Distance function often used in computer sciences

Discrete: DKL(P|Q) =
∑

i P(i)log(
P(i)
Q(i))

Continuous: DKL(P|Q) =
∫ ∞

−∞ p(x)log(p(x)q(x))

With:

Entropy: −
∑

i P(i)log(P(i)) - expected code length
Cross Entropy: −

∑
i P(i)log(Q(i)) - expected coding length using the optimal code for Q

DKL =
∑

i P(i)log(
P(i)
Q(i)) =

∑
i P(i)[log(P(i))− log(Q(i))] - extra bits needed

Jensen-Shannon Divergence (JSD): JSD(P|Q) = 1

2
DKL(P|M) + 1

2
DKL(Q|M),

M = 1

2
(P + Q) - symmetric Kullback-Leibler divergence

Kauba C., Wimmer G.: GANs and Image2Image Translation 20/96

Maximum Likelihood Estimate

θ̂ = argmax
θ

{
∏

i=1...m
PG (xi ; θ)} → argmax

θ
{log(

∏
i=1...m

PG (xi ; θ))} =

argmax
θ

{
∑

i=1...m log(PG (xi ; θ))}, {x1, ..., xm} sampled from Pdata(x)

= argmax
θ

{
∑

i=1...m Pdata(xi)log(PG (xi ; θ))}- this is cross entropy

≈ argmax
θ

{
∑

i=1...m Pdata(xi)log(PG (xi ; θ))−
∑

i=1...m Pdata(xi)log(Pdata(xi))}

= argmin
θ

{KL(Pdata(x)|PG (xi ; θ)) this is now the KL divergence

Remember that we started with PG being a Gaussian mixture model, hence �nding the
best θ is still �nding the best �tting Gaussians, which is limited in the type of data
distributions that can be generated.

The above derived ML approach does not work well

⇒Introduce the GAN that will change PG completely instead of just estimating the
parameters of a �xed type of PG

In essence, we want to �nd the best PG which is more complex and structured than
Gaussian distributions in order to approximate Pdata

Kauba C., Wimmer G.: GANs and Image2Image Translation 21/96

Deriving the GAN Architecture

Let's use a neuronal network to resemble PG (x ; θ):

PG (x) =
r
z Pprior (z)I[G(z)=x]dz

Question is now: how do we compute this likelihood?

Kauba C., Wimmer G.: GANs and Image2Image Translation 22/96

Basic Idea of a GAN (1)

Generator G

G is a function with an input z and an output x
Given a prior distribution Pprior (z), G de�nes a probability distribution PG (x)

Discriminator D

D is also a function with an input x and a scalar value as output
It evaluates the di�erence between PG (x) and Pdata(x)

In order for D to be able to quantify the di�erence between Pdata(x) and PG (x) we need
to de�ne a cost function V (G ,D):

Ĝ = argmin
G

{max
D

{V (G ,D)}}

Remember: Here we are changing the whole distribution G instead of just
updating/changing its parameters (di�erence to maximum likelihood estimate)

Kauba C., Wimmer G.: GANs and Image2Image Translation 23/96

Basic Idea of a GAN (2)

Ĝ = argmin
G

{max
D

{V (G ,D)}}

We pick a JSD (Jenson-Shannon Divergence) function:
V = Ex∼Pdata

[log(D(x)] + Ex∼PG
[log(1− D(x))]

Given a generator G , max
D

{V (G ,D)} evaluates the di�erence between the two

distributions Pdata and PG

So we pick the generator G such that PG is most similar to Pdata

Kauba C., Wimmer G.: GANs and Image2Image Translation 24/96

Basic Idea of a GAN (3)

max
D

{V (G ,D)}, Ġ = argmin
G

{max
D

{V (G ,D)}}

Given G , we now want to �nd the optimal D̂ maximising:

V = Ex∼Pdata
[log(D(x)] + Ex∼PG

[log(1− D(x))]
=

∑
[Pdata(x)log(D(x)) + PG (x)log(1− D(x))]

Thus: D̂(x) = Pdata(x)
Pdata(x)+PG (x)

Explanation:

Assuming that D(x) can have any value and with a given x , the optimal D̂ is maximising:
f (D) = a · log(D) + b · log(1− D) → D̂ = a

a+b

Kauba C., Wimmer G.: GANs and Image2Image Translation 25/96

Basic Idea of a GAN (4)

Kauba C., Wimmer G.: GANs and Image2Image Translation 26/96

Basic Idea of a GAN (5)

max
D

{V (G ,D)}, V = Ex∼Pdata
[log(D(x)] + Ez∼PG

[log(1− D(z))]

max
D

{V (G ,D)} = V (G , D̂), where D̂(x) = Pdata
Pdata+PG

and 1− D̂(x)= PG
Pdata+PG

using the de�nition of V :

max
D

{V (G ,D)} = Ex∼Pdata
[log(D̂(x)] + Ex∼PG

[log(1− D̂(x))]

≈
∑

[Pdata(x)log(D̂(x)) + PG (x)log(1− D̂(x))]]
= −2 · log(2) + 2 · JSD(Pdata(x)|PG (x))

Remember that: JSD(P|Q) = 1
2DKL(P|M) + 1

2DKL(Q|M) where M = 1
2(P + Q) and

DKL(P|Q) =
∑

P(x)log(P(x)
Q(x))

Kauba C., Wimmer G.: GANs and Image2Image Translation 27/96

Summary of the Basic GAN Idea

Generator G and a Discriminator D

Goal: Looking for Ĝ such that:

Ĝ = argmin
G

{max
D

{V (G ,D)}}

with V = Ex∼Pdata
[log(D(x)] + Ez∼PG

[log(1− D(z))]

Given the Generator G : max
D

V (G ,D) = −2 · log(2) + 2 · JSD(Pdata(x)|PG (z))

What is now the optimal G?

G such that it minimises the JSD (= 0):
In that case: PG (z) = Pdata(x)

Kauba C., Wimmer G.: GANs and Image2Image Translation 28/96

How to �nd the Optimum in Practice (1)

V = Ex∼Pdata
[log(D(x)] + Ex∼PG

[log(1− D(x))]

Assume we have G given, how do we compute max
D

{V (G ,D)} (note: this corresponds to

the loss function of the network)?

Sample {x1, ..., xm} from Pdata(x)
Sample {x∗

1
, ..., x∗m} from the generator PG (x)

Maximise:

V ′ =
1

m

∑
i=1...m

log(D(xi)) +
1

m

∑
i=1...m

log(1− D(x∗i))

where xi is a positive example D must accept and x∗i is a negative example D must reject

This is exactly what a binary classi�er does:

Kauba C., Wimmer G.: GANs and Image2Image Translation 29/96

How to �nd the Optimum in Practice (2)

Binary Classi�er:

Output is D(x), minimise the cross-entropy
If x is a positive example → minimise −log(D(x))
If x is a negative example → minimise −log(1− D(x))

Hence the discriminator D is a binary classi�er with its parameters θd
{x1, ..., xm} from Pdata(x) → positive examples
{x∗

1
, ..., x∗m} from PG (x) → negative examples

Minimise L = −V ′ or maximise V ′ = 1
m

∑
i=1...m log(D(xi)) +

1
m

∑
i=1...m log(1− D(x∗i))

This is done using gradient ascent/descent (see GAN training algorithm)

Kauba C., Wimmer G.: GANs and Image2Image Translation 30/96

GAN Architecture Overview

Z is some random noise (Gaussian or Uniform)

Z can be thought as the latent representation of the image

Kauba C., Wimmer G.: GANs and Image2Image Translation 31/96

Generator Model

Takes a �xed-length random vector z as input

Vector is drawn from a Gaussian random distribution (or Uniform)
Used to seed the generative process

Generates a sample x in the desired output domain

After generator training, points in the multi-dimensional vector space will correspond to
points in the problem domain

Vector space is often referred to as latent space.

Latent variables are important for the domain but are not directly observable
Latent space is a projection or compression of a data distribution, i.e. it provides high-level
concepts of the observed raw data

After the training, the generator is kept and used to generate new samples

Kauba C., Wimmer G.: GANs and Image2Image Translation 32/96

Latent Space Captures Interesting Patterns

Kauba C., Wimmer G.: GANs and Image2Image Translation 33/96

Generator Network - Some More Formal Requirements

Must be di�erentiable (to be able to use SGD for training)

In theory, could use REINFORCE for discrete variables

No invertibility requirement

Trainable for any size of z

Some guarantees require z to have higher dimension than x

Can make x conditionally Gaussian given z but need not do so

Kauba C., Wimmer G.: GANs and Image2Image Translation 34/96

Discriminator Model

Takes an example from the domain as input (real or generated) and predicts a binary class
label - real or fake (generated)

Real samples are from the training dataset
Fake samples are output by the generator model

The discriminator is a usual classi�cation model (predictive modelling)

After the training process, the discriminator is discarded

For training (see next slide) use SGD-like algorithm of choice (usually Adam) on two
mini-batches simultaneously:

A mini-batch of training examples
A mini-batch of generated samples

Kauba C., Wimmer G.: GANs and Image2Image Translation 35/96

GAN Training (1)

The two models, generator and discriminator, are trained together but in an alternating
manner (not simultaneously)

Generator generates a batch of samples
These samples, along with real samples from the domain, are provided to the discriminator
and classi�ed as real or fake
Discriminator is updated to get better in discriminating the samples in the next round (while
the generator is kept constant during the discriminator training phase)
Generator is updated based on how well it was able to fool the discriminator (discriminator is
kept constant during the generator training phase)
Otherwise the generator would be trying to hit a moving target and might never converge

Training is essentially playing a zero-sum game between generator and discriminator
(competing against each other)

If the discriminator successfully identi�es all samples, it is rewarded or not updated while the
generator is penalised (and vice versa)

Kauba C., Wimmer G.: GANs and Image2Image Translation 36/96

GAN Training (2)

This progression poses a problem for convergence of the GAN as a whole:

The discriminator feedback gets less meaningful over time
If the GAN continues training past the point when the discriminator is giving completely
random feedback
The generator starts to train on junk feedback, and its own quality may collapse

As the generator improves with training, the discriminator performance gets worse because
the discriminator can't easily tell the di�erence between real and fake. At a limit, the
generator generates perfect replicas from the input domain each time and the
discriminator is not able to distinguish between real and fake → predicts �unsure� each
time (i.e. 50% real or fake)

In practice for a useful generator model we do not reach this point
For a GAN, convergence is often a �eeting, rather than stable, state

Kauba C., Wimmer G.: GANs and Image2Image Translation 37/96

Training the Discriminator

Kauba C., Wimmer G.: GANs and Image2Image Translation 38/96

Training the Generator (1)

Kauba C., Wimmer G.: GANs and Image2Image Translation 39/96

Training the Generator (2)

Backpropagation adjusts each weight in the right direction by calculating the weight's
impact on the output

How the output would change if you changed the weight.

BUT: the impact of a generator weight depends on the impact of the discriminator
weights it feeds into

Hence, backpropagation starts at the output and �ows back through the discriminator into
the generator

At the same time, we don't want the discriminator to change during generator training.

Trying to hit a moving target would make a hard problem even harder for the generator

After generating the examples and letting the discriminator classify a batch of samples
(calculating the loss):

Backpropagate through both the discriminator and generator to obtain gradients
Use gradients to change only the generator weights

Kauba C., Wimmer G.: GANs and Image2Image Translation 40/96

Alternating Training of the Generator and Discriminator

Figure: Alternating Training of the Generator and Discriminator

Kauba C., Wimmer G.: GANs and Image2Image Translation 41/96

GAN Formulation (a bit more theoretic)

min
G

max
D

V (D,G)

Formulated as minimax as both are playing a zero-sum game, where:

Discriminator tries to maximise its reward V (D,G)
Generator tries to minimise Discriminator's reward (or maximise its loss):

V (D,G) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1− D(G (z)))]

Nash equilibrium (game theoretic concept) of this game is achieved at:

Pdata(x) = Pgen(x) ∀x
D(x) = 1

2
∀x

Kauba C., Wimmer G.: GANs and Image2Image Translation 42/96

GAN Training Algorithm

Kauba C., Wimmer G.: GANs and Image2Image Translation 43/96

Exercise 1 - GAN principles

Exercise: Train a GAN that learns a simple training data distribution, e.g. a normal
distribution. Material: Workshop Course Materials → GAN_principles_exercise.ipynb

Kauba C., Wimmer G.: GANs and Image2Image Translation 44/96

Deep Convolutional GAN (DCGAN)

Figure: Deep Convolutional GAN Architecture

Replace FC hidden layers with convolutions, Generator: Fractional-Strided convolutions
Use batch Normalisation after each layer
Inside Generator: Use ReLU for hidden layers, use Tanh for the output layer

Kauba C., Wimmer G.: GANs and Image2Image Translation 45/96

Exercise 2 - DCGAN

Exercise: Train a DCGAN that learns the MNIST data distribution and is able to synthesize
handwritten digits. Material: Workshop Course Materials → DCGAN_exercise.ipynb

Kauba C., Wimmer G.: GANs and Image2Image Translation 46/96

Outline

1 Introduction
GAN Overview
GAN Literature
Generative Modelling

2 General GAN Architecture

3 Caveats and Challenges with GANs

4 Conditional GANs (CGAN)

5 CycleGAN

6 CoupledGAN

7 General Advice and Caveats

Kauba C., Wimmer G.: GANs and Image2Image Translation 47/96

Advantages and Challenges of GANs

Advantages

Sampling (or sample generation) is straightforward
Training doesn't involve Maximum Likelihood estimation
Robust to over�tting (since the Generator never sees the actual training data, only presented
to the Discriminator)
GANs are good at capturing the modes of the distribution (empirically)

Challenges

Probability distribution P(X) is implicit → not straightforward to compute P(X); �Vanilla
GANs� are only good for sampling/generation
Training a GAN is hard →Non-Convergence; Mode-Collapse (explained below)

Kauba C., Wimmer G.: GANs and Image2Image Translation 48/96

Importance of the Loss Function - Vanishing Gradients

min
G

max
D

V (D,G)

V (D,G) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1− D(G (z)))]]

∇θGV (D,G) = ∇θGEz∼p(z)[log(1− D(G (z)))]

∇alog(1− σ(a)) = −∇aσ(a)
1−σ(a) = −σ(a)(1−σ(a))

1−σ(a) = −σ(a) = −D(G (z))

Gradient goes to 0 if D is con�dent, i.e. D(G (z)) → 0 (called saturation or vanishing
gradient)

Kauba C., Wimmer G.: GANs and Image2Image Translation 49/96

Vanishing Gradients - Solution

Original minimax cost for the Generator:

Ez∼p(z)[log(1− D(G (z)))]]

Modi�ed cost for the Generator:

Ez∼p(z)[−log(D(G (z))))]]

Fixes the saturation problem

Kauba C., Wimmer G.: GANs and Image2Image Translation 50/96

Vanishing Gradients - Wasserstein Loss (1)

Wasserstein loss:

Wasserstein loss is designed to prevent vanishing gradients even when the discriminator is
trained to optimality

Wasserstein loss function tries to increase the gap between the scores for real and
generated images

Discriminator (here called critic) loss: D(x)− D(G (z)) (discriminator tries to maximise
this function)

Generator loss: D(G (z)) (generator tries to maximise this function)

The loss functions can be summarised as follows

Critic Loss = [average critic score on real images] � [average critic score on fake images]
Generator Loss = -[average critic score on fake images]

Where the average scores are calculated across a mini-batch of samples

This loss function depends is a modi�cation of the GAN scheme (resulting in the so called
WGAN) in which the discriminator does not actually classify instances

Kauba C., Wimmer G.: GANs and Image2Image Translation 51/96

Vanishing Gradients - Wasserstein Loss (2)

For each instance it outputs a number, but this number does not have to be less than one
or greater than 0

Discriminator training just tries to make the output bigger for real instances than for fake
instances
It can't really discriminate between real and fake
WGAN discriminator is actually called a "critic" instead of a "discriminator"

Note: Theoretical justi�cation for the WGAN requires that the weights throughout the
GAN be clipped so that they remain within a constrained range

Implementation of a WGAN requires a few minor changes to the DCGAN:

Use a linear activation function in the output layer of the critic model (instead of sigmoid)
Use Wasserstein loss to train the critic and generator models that promote larger di�erence
between scores for real and generated images
Constrain critic model weights to a limited range after each mini batch update (e.g.
[-0.01,0.01])

Kauba C., Wimmer G.: GANs and Image2Image Translation 52/96

Vanishing Gradients - Wasserstein Loss (3)

Figure: Wasserstein Loss Algorithm

Kauba C., Wimmer G.: GANs and Image2Image Translation 53/96

Non-Convergence (1)

Deep Learning models (in general) involve a single �player�

Player tries to maximise its reward (or minimise its loss)
Stochastic Gradient Descent (SGD) in combination with backpropagation is used to �nd the
optimal parameters
SGD has convergence guarantees (under certain conditions)
Problem: with non-convexity, it might converge to a local optimum: min

G
L(G)

GANs involve two (or mode) players

Discriminator is trying to maximise its reward
Generator is trying to minimise Discriminators reward (zero-sum game): min

G
max
D

V (D,G)

SGD was never designed to �nd the Nash equilibrium of a game
Problem: might not converge to the Nash equilibrium at all

Kauba C., Wimmer G.: GANs and Image2Image Translation 54/96

Non-Convergence (2)

Simple example, min
x
max
y

V (x , y), let V (x , y) = xy

∂
∂x = −y , ∂

∂y = x , ∂2

∂y2 = ∂
∂x = −y (di�erential

equation's solution has sinusoidal terms)
State 1:x > 0, y > 0, V > 0 → increase y , decrease x
State 2: x < 0, y > 0, V < 0 → decrease y , decrease
x
State 3: x < 0, y < 0, V > 0 → decrease y , increase
x
State 4: x > 0, y < 0, V < 0 → increase y , increase x
State 5: x > 0, y > 0, V > 0 → increase y , decrease
x

we are back to State 1!

Even with a small learning rate, it will not converge at
all!

Kauba C., Wimmer G.: GANs and Image2Image Translation 55/96

Mode-Collapse (1)

Usually a GAN should produce a wide variety of outputs, e.g. a di�erent face for every
random input to a face generator

However, if a generator produces an especially plausible output, the generator may learn to
produce only that output

In fact, the generator is always trying to �nd the one output that seems most plausible to
the discriminator

If the generator starts producing the same output (or a small set of outputs) over and over
again, the discriminator's best strategy is to learn to always reject that output

If the next generation of discriminator gets stuck in a local minimum and doesn't �nd the
best strategy, then it's too easy for the next generator iteration to �nd the most plausible
output for the current discriminator

Each iteration of generator over-optimizes for a particular discriminator, and the
discriminator never manages to learn its way out of the trap

As a result the generators rotate through a small set of output types

This form of GAN failure is called mode collapse

Kauba C., Wimmer G.: GANs and Image2Image Translation 56/96

Mode-Collapse (2)

Generator fails to output diverse samples and is stuck with only one �class� of samples or
rotates through a small set of output types

Kauba C., Wimmer G.: GANs and Image2Image Translation 57/96

Mode-Collapse Real Examples

Kauba C., Wimmer G.: GANs and Image2Image Translation 58/96

Solutions to Mode-Collapse: Wasserstein Loss and Unrolled GANs

Wasserstein loss:

Alleviates mode collapse enabling to train the discriminator to optimality without worrying
about vanishing gradients

If the discriminator doesn't get stuck in local minima, it learns to reject the outputs that
the generator stabilizes on

Hence, the generator has to try something new to succeed, which prevents the mode
collapse

Unrolled GANs:

Use a generator loss function that incorporates not only the current discriminator's
classi�cations, but also the outputs of future discriminator versions

So the generator can't over-optimize for a single discriminator, again solving the
mode-collapse problem

Kauba C., Wimmer G.: GANs and Image2Image Translation 59/96

Solution to Mode-Collapse: Supervision with Labels

Figure: Instead of using only the two classes, use di�erent labels for each subclass

Additional label information of the real data might help the GAN to converge

Empirically generates much better samples

Kauba C., Wimmer G.: GANs and Image2Image Translation 60/96

One-Sided Label Smoothing

Replace the default discriminator cost: cross_entropy(1., discriminator(data)) +

cross_entropy(0., discriminator(samples))

By the one-sided label smoothing cost: cross_entropy(.9, discriminator(data)) +

cross_entropy(0., discriminator(samples))

Or more general: cross_entropy(1.-alpha, discriminator(data)) +

cross_entropy(beta, discriminator(samples))

Do not smooth the negative labels!

Bene�ts:

Does not reduce classi�cation accuracy, only con�dence
Prevents discriminator from giving very large gradient signal to generator
Prevents extrapolating to encourage extreme samples

Kauba C., Wimmer G.: GANs and Image2Image Translation 61/96

Solution to Mode-Collapse: Mini-Batch GANs (1)

At Mode-Collapse the Generator produces good samples, but only very few of them

Discriminator cannot tag them as fake

To avoid the mode collapse, the Generator has to be rewarded for outputting diverse
samples

How to reward sample diversity?

To address this, the discriminator has to know about this edge-case (low sample diversity),
by:

Letting the Discriminator look at the entire batch of samples instead of a single sample only
If there is lack of diversity, it will mark the examples as fake, even if they are good ones

This will force the Generator to produce diverse samples instead of only very few good ones

Kauba C., Wimmer G.: GANs and Image2Image Translation 62/96

Solution to Mode-Collapse: Mini-Batch GANs (2)

Extract features that capture diversity within the mini-batch

E.g. use the L2 norm of the di�erences between all pairs of samples from the batch

Feed those features to the discriminator along with the sample/image

Feature values will di�er between diverse and non-diverse batches

Hence, the Discriminator will rely on those features for classi�cation as well

In turn, this will:

Force the Generator to match those feature values with real data
Leading to the generation of diverse batches

Kauba C., Wimmer G.: GANs and Image2Image Translation 63/96

Alternative Formulation of GAN Loss (1)

min
G

max
D

V (D,G) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1− D(G (z)))]]

D∗ = argmax
D

V (D,G) G∗ = argmin
G

V (D,G)

Here, the strategy of the Discriminator is D(x) → 1, D(G (z)) → 0

Alternatively, �ip the binary classi�cation labels, i.e. fake=1, real=0

V (D,G) = Ex∼p(x)[log(1− D(x))] + Ez∼p(z)[log(D(G (z)))]]

Here, now the Discriminator's strategy is D(x) → 0, D(G (z)) → 1

Kauba C., Wimmer G.: GANs and Image2Image Translation 64/96

Alternative Formulation of GAN Loss (2)

If we only want to encode D(x) → 0, D(G (z)) → 1:

D∗ = argmaxDEx∼p(x)[log(1− D(x))] + Ez∼p(z)[log(D(G (z)))]

We can use this: D∗ = argminDEx∼p(x)[log(D(x))] + Ez∼p(z)[log(1− D(G (z)))]

Now we can replace the cross-entropy loss with any loss function (Hinge Loss)

D∗ = argminDEx∼p(x)[D(x)] + Ez∼p(z)[max(0,−D(G (z)))]

Thus, instead of outputting probabilities, the Discriminator just has to output:

High values for fake samples
Low values for real samples

Hence, we now have a much more general formulation of the loss function (more
possibilities for suitable loss functions)

Kauba C., Wimmer G.: GANs and Image2Image Translation 65/96

Outline

1 Introduction
GAN Overview
GAN Literature
Generative Modelling

2 General GAN Architecture

3 Caveats and Challenges with GANs

4 Conditional GANs (CGAN)

5 CycleGAN

6 CoupledGAN

7 General Advice and Caveats

Kauba C., Wimmer G.: GANs and Image2Image Translation 66/96

Conditional GAN Introduction

Important extension to GANs for their use to
conditionally generate output

Generative model can be trained to generate new
examples from the input domain, where the input
(random vector from latent space) is provided with
(conditioned by) some additional input

Additional input could be a class value (e.g. a digit in
case of handwritten digits)

The discriminator is also conditioned, i.e. it is provided
with both, the generated sample and the additional
input

Teaches the generator to generate examples of that
class (matching the additional input)

min
G

max
D

V (D,G) = Ex∼p(x)[logD(x |y)] + Ez∼p(z)[log(1− D(G (z |y)))]]

Kauba C., Wimmer G.: GANs and Image2Image Translation 67/96

Conditional GAN Advantages and Applications

Hence, a conditional GAN can be used to generate examples from a domain of a given type

One step further: GAN models can be conditioned on an example from the domain, e.g.
an image

Leads to many practical applications of GANs when we have explicit supervision available:

text-to-image translation, image-to-image translation, ...

GANs for transforming day to night images:

Discriminator is provided with examples of real and generated, night-time images
Discriminator is also conditioned on real daytime photos as input
Generator is provided with a random vector from the latent space (conditioned on) real
daytime images as input

Kauba C., Wimmer G.: GANs and Image2Image Translation 68/96

Conditional GAN Application: Image-to-Image Translation (1)

Kauba C., Wimmer G.: GANs and Image2Image Translation 69/96

Conditional GAN Application: Image-to-Image Translation (2)

Architecture: DCGAN-based architecture

Training is conditioned on the images
from the source domain

Conditional GANs provide an e�ective
way to handle many complex domains
without worrying about designing
structured loss functions explicitly

Here, the loss is a weighted combination
of the usual discriminator-based loss and
a pixel-wise loss that penalizes the
generator for departing from the source
image too much

Kauba C., Wimmer G.: GANs and Image2Image Translation 70/96

Conditional GAN Application: Text-to-Image Translation (1)

Motivation:

Given a text description, generate
images closely associated

Uses a conditional GAN with the
generator and discriminator being
condition on �dense� text embedding

Kauba C., Wimmer G.: GANs and Image2Image Translation 71/96

Conditional GAN Application: Text-to-Image Translation (2)

Positive example: real image, right text

Negative examples:

real image, wrong text
fake image, right text

Kauba C., Wimmer G.: GANs and Image2Image Translation 72/96

Conditional GAN Application: Text-to-Image Translation (3)

Kauba C., Wimmer G.: GANs and Image2Image Translation 73/96

Conditional GAN Application: Text-to-Image Translation (4)

Kauba C., Wimmer G.: GANs and Image2Image Translation 74/96

Conditional GAN Application: Face Ageing (1)

Di�erentiating Feature: Uses an Identity Preservation Optimization using an auxiliary
network to get a better approximation of the latent code (z*) for an input image

Latent code is then conditioned on a discrete (one-hot) embedding of age categories

Kauba C., Wimmer G.: GANs and Image2Image Translation 75/96

Conditional GAN Application: Face Ageing (2)

Kauba C., Wimmer G.: GANs and Image2Image Translation 76/96

Exercise 3 - cGAN

Exercise: Train a conditional GAN that is able to synthesize speci�c handwritten digits.
Material: Workshop Course Materials → cGAN_exercise.ipynb

Kauba C., Wimmer G.: GANs and Image2Image Translation 77/96

Outline

1 Introduction
GAN Overview
GAN Literature
Generative Modelling

2 General GAN Architecture

3 Caveats and Challenges with GANs

4 Conditional GANs (CGAN)

5 CycleGAN

6 CoupledGAN

7 General Advice and Caveats

Kauba C., Wimmer G.: GANs and Image2Image Translation 78/96

Cycle GAN Introduction

Style transfer problem: change the style of an image while preserving its content

Data: two unrelated collections of images, one for each style

Kauba C., Wimmer G.: GANs and Image2Image Translation 79/96

Cycle GAN Basics

If we had paired data (same content in both styles), this would be a supervised learning
problem

In reality, this is hard to �nd →
CycleGAN architecture learns to do it from unpaired data:

Train two di�erent generator nets to go from style 1 to style 2, and vice versa
Make sure the generated samples of style 2 are indistinguishable from real images by a
discriminator net
Make sure the generators are cycle-consistent: mapping from style 1 to style 2 and back
again should give you almost the original image

Kauba C., Wimmer G.: GANs and Image2Image Translation 80/96

Cycle GAN Basic Principle

Kauba C., Wimmer G.: GANs and Image2Image Translation 81/96

Cycle GAN Application 1

Style transfer between aerial photos and maps:

Kauba C., Wimmer G.: GANs and Image2Image Translation 82/96

Cycle GAN Application 2

Style transfer between road scenes and semantic segmentations (labels of every pixel in an
image by object category):

Kauba C., Wimmer G.: GANs and Image2Image Translation 83/96

Exercise 4 - Image to Image translation

Exercise: Train a cycle GAN that translates an image of a horse into a zebra an vice versa.
Material: Workshop Course Materials → cycleGAN_exercise.ipynb

Figure: Source: J.-Y. Zhu, et al., Unpaired image-to-image translation using cycle-consistent adversarial
networks, in Proceedings of the IEEE international conference on computer vision, pp. 2223?2232,
2017.

Kauba C., Wimmer G.: GANs and Image2Image Translation 84/96

Outline

1 Introduction
GAN Overview
GAN Literature
Generative Modelling

2 General GAN Architecture

3 Caveats and Challenges with GANs

4 Conditional GANs (CGAN)

5 CycleGAN

6 CoupledGAN

7 General Advice and Caveats

Kauba C., Wimmer G.: GANs and Image2Image Translation 85/96

CoupledGAN Introduction

Learning a joint distribution of multi-domain images

Using GANs to learn the joint distribution with samples drawn from the marginal
distributions

Direct applications:

Domain adaptation
Image translation

Kauba C., Wimmer G.: GANs and Image2Image Translation 86/96

CoupledGAN Architecture

Weight-sharing constraints the network to learn a joint distribution without corresponding
supervision

Kauba C., Wimmer G.: GANs and Image2Image Translation 87/96

CoupledGAN Application

Some examples of
generating facial
images across
di�erent feature
domains

Corresponding images
in a column are
generated from the
same latent code z

Kauba C., Wimmer G.: GANs and Image2Image Translation 88/96

Outline

1 Introduction
GAN Overview
GAN Literature
Generative Modelling

2 General GAN Architecture

3 Caveats and Challenges with GANs

4 Conditional GANs (CGAN)

5 CycleGAN

6 CoupledGAN

7 General Advice and Caveats

Kauba C., Wimmer G.: GANs and Image2Image Translation 89/96

GAN Recommendations I

In the following, several practical tips and tricks for GAN training from:
https://github.com/soumith/ganhacks

1 Normalize the inputs

normalize the images between -1 and 1
Use tanh as the last layer of the generator output

2 A modi�ed loss function
Usual loss function to optimise G is: min(log(1− D)), but in practice max(log(D)) is
usually used because:

the �rst formulation has vanishing gradients early on

Also works well in practice:

Flip labels when training generator: real = fake, fake = real

3 Use a spherical Z

Don't sample from a Uniform distribution
Instead sample from a Gaussian distribution
When doing interpolations, do the interpolation via a great circle, rather than a straight line
from point A to point B
Tom White's Sampling Generative Networks ref code https://github.com/dribnet/plat
has more details

Kauba C., Wimmer G.: GANs and Image2Image Translation 90/96

https://github.com/soumith/ganhacks
https://github.com/dribnet/plat

GAN Recommendations II

4 BatchNorm

Construct di�erent mini-batches for real and fake, i.e. each mini-batch needs to contain only
all real images or all generated images
If batch norm is not an option use instance normalization (for each sample, subtract mean
and divide by standard deviation)

5 Avoid Sparse Gradients: ReLU, MaxPool

Stability of the GAN game su�ers if you have sparse gradients
LeakyReLU = good (in both G and D)
For Downsampling, use: Average Pooling, Conv2d + stride
For Upsampling, use: PixelShu�e (https://arxiv.org/abs/1609.05158),
ConvTranspose2d + stride

6 Use Soft and Noisy Labels

Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each
incoming sample, if it is real, then replace the label with a random number between 0.7 and
1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example)
Make the labels the noisy for the discriminator: occasionally �ip the labels when training the
discriminator

Kauba C., Wimmer G.: GANs and Image2Image Translation 91/96

https://arxiv.org/abs/1609.05158

GAN Recommendations III

7 DCGAN / Hybrid Models

Use DCGAN when you can, it works and produces better results
If you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE +
GAN

8 Use stability tricks from RL
Experience Replay

Keep a replay bu�er of past generations and occasionally show them
Keep checkpoints from the past of G and D and occasionally swap them out for a few iterations

All stability tricks that work for deep deterministic policy gradients

9 Use the ADAM Optimizer

Optimise Adam rules
Use SGD for discriminator and ADAM for generator

10 Track failures early

D loss goes to 0: failure mode
check norms of gradients: if they are over 100 things are screwing up
when things are working, D loss has low variance and goes down over time vs having huge
variance and spiking
if loss of generator steadily decreases, then it's fooling D with garbage

Kauba C., Wimmer G.: GANs and Image2Image Translation 92/96

GAN Recommendations IV

11 Don't balance loss via statistics (unless you have a good reason to)

Don't try to �nd a (number of G / number of D) schedule to uncollapse training
It's hard and we've all tried it.
If you do try it, have a principled approach to it, rather than intuition
E.g.: while lossD > A: train D, while lossG > B: train G

12 If you have labels, use them

If you have labels available, training the discriminator to also classify the samples: axillary
GANs

13 Add noise to inputs, decay over time
Add some arti�cial noise to inputs to D (Arjovsky et. al., Huszar, 2016)

http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/

https://openreview.net/forum?id=Hk4_qw5xe

Adding Gaussian noise to every layer of generator (Zhao et. al. EBGAN)

Improved GANs: OpenAI code also has it (commented out)

14 Train discriminator more (sometimes)

Especially when you have noise
Hard to �nd a schedule of number of D iterations vs G iterations

Kauba C., Wimmer G.: GANs and Image2Image Translation 93/96

http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/
https://openreview.net/forum?id=Hk4_qw5xe

GAN Recommendations V

15 Batch Discrimination

Mixed results

16 Discrete variables in Conditional GANs

Use an Embedding layer

Add as additional channels to images

Keep embedding dimensionality low and upsample to match image channel size

17 Use Dropouts in G in both train and test phase

Provide noise in the form of dropout (50%)

Apply on several layers of our generator at both training and test time

https://arxiv.org/pdf/1611.07004v1.pdf

Kauba C., Wimmer G.: GANs and Image2Image Translation 94/96

https://arxiv.org/pdf/1611.07004v1.pdf

End

Thank you for your attention!

Figure: Example of the Progression in the Capabilities of GANs From 2014 to 2017

Questions?

Kauba C., Wimmer G.: GANs and Image2Image Translation 95/96

Sources I

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. Generative adversarial nets, NIPS (2014).

Goodfellow, Ian NIPS 2016 Tutorial: Generative Adversarial Networks, NIPS (2016).

https://www.iangoodfellow.com/slides/

https://github.com/soumith/ganhacks

https://machinelearningmastery.com/

what-are-generative-adversarial-networks-gans/

https://www.deeplearningbook.org/

Kauba C., Wimmer G.: GANs and Image2Image Translation 96/96

https://www.iangoodfellow.com/slides/
https://github.com/soumith/ganhacks
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://www.deeplearningbook.org/

	Introduction
	General GAN Architecture
	Caveats and Challenges with GANs
	Conditional GANs (CGAN)
	CycleGAN
	CoupledGAN
	General Advice and Caveats
	References

