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Deep Learning Basics
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Biological Neural Networks

The brain is made up of a network of neurons.
The, very simplified, version of how they work is this:

A nerve cell, or neuron, gathers energy
from it’s dendrites, a treelike branching
structure.
Signals reach the dendrites via synapse
where a neuro transmitter is emitted and
gathers on the receptors of the dendrite,
which determines the potential (in an
electrical sense) of the postsynaptic
membrane.
This potential is an electrical signal that is
transported along the dendrite to the
soma, the body of the nerve cell.
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Biological Neural Networks II

The total of the signals reaching the soma
are transferred to the axon hillock.
Here the neuron either fires or not (all or
nothing activation) depending whether the
total of the signals exceed an action
threshold.
If the cell fires the signal is transferred
along the axon to the dendrites of other
nerve cell, thereby forming a neural
network.
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Rosenblatt Perceptron (1958)
The Rosenblatt Perceptron is built around a single neuron.
This model of a neuron is still used in modern ANNs/CNNs!

Inputs and outputs are binary, the weights are not.
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Rosenblatt Perceptron and Learning I

The Rosenblatt Perceptron has only a single binary output and is thus a two class
classifier (cat/dog; cat/not cat; food i like/dislike, ...).

Learning is based on known input and output (supervised learning).
The input (x = x1, . . . , xn) is fed into the perceptron and the output h(x) is
calculated.
The actual output h(x)is compared to to the desired output y.
If the two match we do not change anything (working as intended) if not we have
to change the weights by some amount.
This amount is usually called the learning rate (σ) and can change over time.

Now let’s try to figure out how learning works with an actual example.
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Rosenblatt Perceptron and Learning II
A toy example

x1 (windy) x2 (cloudy) y (nice day)
1 1 0
0 1 0
1 0 0
0 0 1

Let’s start with weights of 1 (w0 = w1 = w2 = 1 or w = [1, 1, 1]) and learning rate
σ = 1.
If we input the first pattern we have:

2∑
i=0

wi × xi = 1× 1︸ ︷︷ ︸
bias:w0x0

+1× 1 + 1× 1 ≥ 0 7→ 1 (desired output: 0).
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Rosenblatt Perceptron and Learning III

The sum should be less than 0 but is not, therefore we have to reduce the weights.
Conversely if the output is 0 (then the sum is less than 0) and should be 1 then we
want to increase the weights. Given that all values are wither 0 or 1, we can
conveniently put this as:

δw = y− h(x) = adjusted by the learning rate) = σ(y− h(x)).

In our case δw = 1(0− 1) = −1, and the weights thus become

w0 ← w0 + δ = 1− 1 = 0 . . . w = [0, 0, 0].



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Rosenblatt Perceptron and Learning IV
Let us continue with the next pattern:

0× 1 + 0× 0 + 0× 1 ≥ 0 7→ 1 (desired output: 0).

Again we have delta = −1 to adjust the weights for the sum to go down.

But wait a second!

It isn’t windy (x1 = 0) so no matter w1 that term would come out as zero. That
means w1 did not influence the results, and we have learned nothing about w1 (and
should thus not adjust it)!
Since the input values are binary, we can use them write the correct update step for
the weights as:

wi ← wi + xiδw.

If xi = 1 the term wixi did influence the sum and the weight is adjusted by 1δw = δw
as previously, but if xi = 0 then it did not and the adjustment also becomes 0.
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Rosenblatt Perceptron and Learning V
Now we can simply run the pattern to update the weights until all the patterns we
have are correctly handled. Weights are update from one line to the next.

pattern windy cloudy nice day w0 wwindy wcloudy h(x) δw
1 1 1 0 1 1 1 1 -1
2 0 1 0 0 0 0 1 -1
3 1 0 0 -1 0 -1 0 0
4 0 0 1 -1 0 -1 0 1
1 1 1 0 0 0 -1 0 0
2 0 1 0 0 0 -1 0 0
3 1 0 0 0 0 -1 1 -1
4 0 0 1 -1 -1 -1 0 1
1 1 1 0 0 -1 -1 0 0
2 0 1 0 0 -1 -1 0 0
3 1 0 0 0 -1 -1 0 0
4 0 0 1 0 -1 -1 1 0

The last rotation for all patterns did not change anything so we have learned all the
inputs.
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Extensions on the Rosenblatt Perceptron I
The first, and a relatively simple extension is the change from binary input to
real-valued input.

Inputs are often normalized to be between [0, 1].
δw = σ(y− h(x)) still works, the rate of adjustment simply becomes lower the
closer the actual result is to the desired result.
wi ← wi + xiδw also still works, the adjustment of the is coupled to how much
influence the input had on the result.
h(x) is (often) changed from the Heaviside function to a real value activation
function. Typical ones include:
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Extensions on the Rosenblatt Perceptron II
Extension to a sequences of interconnected neurons, i.e., from a single neuron to a
brain like network.

Using multiple layers of perceptrons is called a ’deep neural network’ or a ’multi
layer perceptron’.
This breaks the simple learning for perceptrons.
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Simple and Complex Cells (Hubel and Wiesel 1962)

Hubel and Wiesel define simple cells as
having distinct antagonistic regions in their
receptive fields.
They define complex cells as any cell that
was not simple. They reported that
complex cells achieved position invariance
within their receptive field: they would
respond to a stimulus of the appropriate
orientation regardless of position within the
receptive field.
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Neocognitron (Fukushima 1980) I
Fukushima used this idea to improve upon a prior network (the cognitron). The main
problem of the cognitron was position dependence of the stimulus.

Each neuron has a limited input area and every neuron of a layer learns the same
pattern. A single layer corresponds to a single pattern but over the whole image
(equivalent to s-cells).
Multiple such patterns are learned, e.g. edges, corners, and so on.
Layers further on combine inputs of previous layers to form more complex patterns
(equivalent to c-cells).
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Neocognitron (Fukushima 1980) II
This presents some huge problems

Requires enforcement that each layer
learns the same pattern at every
position.
Each specific pattern requires a whole
layer of the same dimension as the
input image.
For example if edges with an
orientation every 10° are learned the
size increases by 18.
A complex network like this has a
huge number of parameters, making
learning harder and requiring more
input/output patterns to properly
learn.
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Neocognitron (Fukushima 1980) III

This is a direct predecessor of the modern convolutional neural networks.
Complexities surrounding learning and enforcing the same pattern over a whole
layer were problematic.
A solution to the data expansion, which is still in use today, are so called pooling
layers.
Since position invariance is a goal the layers could be reduced in size by only using
the strongest response (max) in a given area, say 2× 2 pixels. This max-pooling
reduces the data by a factor of 4 and introduces slight position invariance.

Too large an area should not be used as the relative position of patterns is still
important.
But repeat applications at later stages in the network can be used for further data
reduction and slight introduction of position invariance in larger patterns.
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Backpropagation Algorithm (Rumelhart 1986) I

The simple perceptron learning breaks down when using multiple layers. This was a
huge problem for a long time.
A solution for feed forward networks was presented in 1986.

A feed forward network processed one input at a time with no temporal
information.
A recurrent neural network has a temporal aspect, that is prior inputs can affect
the current one.

The solution comes int he form of the backpropagation algorithm (backprop).
The Backpropagation Algorithm is older.
Has been developed multiple times independently.
The Rumelhart paper showcased it for the learning of a neural network.
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Backpropagation Algorithm (Rumelhart 1986) II

The backprop is a gradient descent method which adjusts the weights based on the
difference in desired outcome and actual outcome.

The input vector x = (x1, . . . , xs) is applied to the first layer of the network.
It is passed through multiple (L) layers, hl, l ∈ {1, . . . ,L}.
Finally the last layer hL produces an output vector ŷ = (ŷ1, . . . , ŷt).
The activation function for each layer is assumed to be the same for all neurons in
that layer fl.
A cost function (or loss function) C calculates the error based on the outcome of
the network ŷ and the desired output y.
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Backpropagation Algorithm (Rumelhart 1986) III
Assuming all layers are fully connected we
get the outputs ol = (ol

1, . . . , ol
m) of a layer

hl like this:
ol

1 = fl(
n∑

j=1
wl

1jol−1
j )

...

ol
m = fl(

n∑
j=1

wl
mjol−1

j )

where the previous layer had n outputs, wl
ij

is the weight between neuron j from hl−1

(= ol−1
j ) to neuron i in hl.

Note that o0 = x.
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Backpropagation Algorithm (Rumelhart 1986) IV

The idea of the backpropagation is the same as for a perceptron, we calculate the error
C(y, ŷ) for a given input/output pattern x, y. Then we adjust the all the weights, i.e.
the weight matrices for each layer, such that the actual output ŷ is moved closer to the
desired output.
Obviously this is not as straight forward as for the perceptron, but we know the
following:

The derivative gives us the direction of change of a function.
The partial derivative of a function for one of it’s parameters gives us the
direction of change for the function regarding that parameter.
A composite function, f(g(x)), can be derived by using the chain rule
(f(g(x))′ = f′(g(x))g′(x).

Our network is a composite function for which we can utilize this as long as fl are
differentiable.
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Backpropagation Algorithm (Rumelhart 1986) V
In practice this is what it looks like.
Lets assume we want to adjust the weights of output node i, that is wL

i = (wL
i∗).

The error of this node is δL
i = ∂C

∂oL
i
(ŷ, y).

This is the change required in the output of ol
i, to facilitate that we have to

change the weights of node i.
Again we know the differential of the activation function fl gives us the required
direction of change.

δwL
ij
=

∂fL
∂wL

ij
(δL

i ).

again we make the change of weight dependant on a learning parameter (σ) and
the strength of the signal, i.e. no signal implies no change.

wL
ij ← wL

ij − σδwL
ij
ol−1

j .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Backpropagation Algorithm (Rumelhart 1986) VI

Now we want to adjust the weights of a node which is not in the output layer.
The problem here is that the output is dependant on the number of neurons in the
next layer as the required change there is passed back to this neuron.

δl
i =

∑
k δ

l+1
wki wki

That is, the change of required is the sum of changes in the next layer propagated
back to this layer. The influence is adjusted by the weight. Meaning if a weight is
low we can’t affect the neuron in the next layer very much, and in turn a required
change in that neuron should not affect this neuron very much.
δl

wij =
∂fl
∂wl

ij
(δl

i), as before

wl
ij ← wl

ij − σδwl
ij
ol−1

j , again as before.
This now let’s us train more complicated networks.
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Backpropagation Algorithm (Rumelhart 1986) VII
The backpropagation is not without problem though.

Depending on learning rate and starting
point the gradient descent can be
trapped at a local minimum.

A solution to this can be to suppress rapid change in direction (momentum) or to
adaptively scale the learning rate. A combination is adaptive moment estimation
(Adam).
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Backpropagation Algorithm (Rumelhart 1986) VIII
Another problem is ’vanishing gradients’ or stuck activation functions, which are
related problems.
We have seen that the backpropagation is relative to the derivative of the function, so
if the output of the function is small then little change, if any happens.

Sigmoid
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f f′

Here the maximum of the derivative is 0.25, now if multiple layers use this activation
function the derivative is repeatedly applied, so after two layers the maximum would be
1
16 and so on.
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Backpropagation Algorithm (Rumelhart 1986) IX
Stuck activation functions can happen when the weights of are adjusted to a
specific range in the domain. Imagine large negative weights as at the inputs of a
rectified linear unit (ReLU), the output will always be zero.
Since we make changes to the weights relative to the output of the function the
weights will no longer be adapted and the neuron will be stuck in a non-activation
mode.
A solution to this can be to prevent constant outputs, in the case of the ReLU the
solution is a leaky ReLU which has a slight slope in the negative.
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.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Convolution on Zip Codes (LeCun 1989) I

Handwritten digit recognition for zip
code recognition for the US postal
service.
“backpropagation can be used on
fairly large tasks with reasonable
training time”
“connections are constrained to the
same weights ... non-linear
subsampling convolution”
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Convolution on Zip Codes (LeCun 1989) II

This is basically an extension of the neocognitron.
The complicated forcing of each connection in a layer (corresponding to a filter)
to learn the same pattern is simplified by using a single connection type which is
convoluted over the previous layer.

Learns single pattern per output layer.
Reduces number of weights since only one filter is used (biases are still per neuron).

The complicated learning is simplified by using backpropagation.
Easy to implement.
Relatively fast convergence.

The input data is vastly expanded, once per filter (like in the neocognitron). And
a similar approach is used to reduce the data. Locality is discarded but
introducing a step size of where the filter is applied. In modern CNN parlance this
is called stride. Both stride and max-pooling are still in used to reduce data.
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Convolution on Zip Codes (LeCun 1989) III
This is basically a modern CNN composed of

input layer
Convolutional layers with stride / and or
reduction layers (max-pooling).
towards the end the convolution is fed into a
fully connected layer structure to perform the
classification.

Basically the convolutional layers learn patterns,
first simple (as in simple cells) but becoming more
complex the farther along the data progresses
(complex cells).
The fully connected layers in the end perform the
classification based on the patterns found in the
convolutional steps.
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ImageNet, AlexNet and GPUs (Krizhevsky 2012) I

AlexNet is basically an extension of the LeCun’s Network.
Heavily used GPUs to accelerate learning.
But was not the first to do so.
Won the ImageNet Challenge (visual object recognition database of 14 million images) by
a large margin (10% better than the next contender).
This brought Neural Networks back into the mainstream.
“Suddenly people started to pay attention, not just within the AI community but across
the technology industry as a whole.” (The Economist, June 2016)
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ImageNet, AlexNet and GPUs (Krizhevsky 2012) II
The work combined various techniques, and evaluated them showcasing the extent to
which they improved the results.

Used exclusively ReLUs as activation functions to combat vanishing gradients of
sigmoid type functions. These result in faster learning.
Training on two GPUs with cross memory access. The network was to large to fit
a single GPU at the time.

Two identical parallel networks with limited crossconnection (third layer and fully
connected layers).

They found that local response normalisation, no required in ReLUs as it mainly is
used to combat saturation, improves the results.
Pooling was performed in an overlapping manner.
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ImageNet, AlexNet and GPUs (Krizhevsky 2012) III

A problem with training was overfitting. The CNN has 60 million parameters to sort
the 14 million images into 1000 categories.

Overfitting
“The production of an analysis which corresponds too closely or exactly to a particular
set of data, and may therefore fail to fit additional data or predict future observations
reliably.” (Oxford living dictionary)
Overfitting is a constant problem for machine learning, and usually results if the model
has too many parameters in comparison to the training data.
In practice this is a problem that can often not be solved. A way around that is to use
a pretrained network on similar data. Then only the classification part of the network
(the fully connected layers) have to be retrained for the actual classes.
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ImageNet, AlexNet and GPUs (Krizhevsky 2012) IV

In this case overfitting was prevented by
Data augmentation, i.e. the multiplication of available data by:

Sampling, patches of smaller images are extracted from a larger image and used as
individual input, can be used to force translation invariance.
Mirroring of images or samples
Adjustment of color intensity and luminance but keeping the objects intact, to allow
to learn to recognize objects in images recorded under different illuminations.

Dropout learning, which means setting the output of some neurons (randomly) to
0 for a training step.

Prevents co-dependencies between neurons as a given input can not be relied upon.
Forces the network to learn more robust patterns, thereby reducing specificity and
improving generalization.
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Types of Networks I
There are different types of networks, in nomenclature but also in how they work.
Some we know already, others will be introduced in other courses (like GANs). Some
we will not cover, but it still is good to know about them.

Perceptron The original, not used on it’s own but as building block for more complex
neural networks.

Multilayer Perceptron (MLP), feed forward neural network (NN or FFNN) This is a
combination of many Perceptrons, grouped into layers, with usually only
one layer connecting to the next.
They can be fully connected, which means that a single neuron
(perceptron) is connected to all the neurons in the previous layer.
These can be used on their own or a classification part in more complex
networks (see CNNs).

Radial basis function networks RBFs are essentially multilayer perceptrons which
change the activation function from monotonic to functions which are
even with a shift (e.g. a gaussian function).
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Types of Networks II

Convolutional Neural Networks These are in essence feed forward networks, but they
are not fully connected (the input of a convolutional filter is limited).
Furthermore, the weights are not trained separately for each neuron, but
are shared in the filter.
These can be used on their own but are usually followed by some other
network, typically a fully connected feed forward network for
classification.

Recurrent neural network Are networks which are not purely feed forward. This
essentially means that RNN has a memory of the previous step. This is
typically used for input which has a time component, such as speech or
handwriting.

Long short-term Memory Networks In essence RNNs with more memory. In reality it’s
a RNN with a different repeating module structure (the memory) which
combats vanishing gradients over time to allow longer efficient memory.
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Types of Networks III
Autoencoders (AE) Is a sort of MLP which is usually symmetric around a central code

layer, the goal is for the first part to encode the input, culminating in the
code layer. The second part then tries to decode the code to reconstruct
the input. That is, the Autoencoder learns an encoding and decoding
scheme specific to the data.

Generative adversarial networks (GAN) Consists of two networks working against each
other in a zero-sum game, i.e. the gain of one network is the loss of the
other. A generative network tries to generate content, e.g., a picture
from a description, whereas the adversarial network tries to determine if
the image is a real or generated image, i.e. it tries to foil the generative
network.

Deconvolutional networks The reversal of a, typical convolutional, neural network. The
input is used, to combine an ensemble of patterns, basically inverted
convolutions, into a greater image or signal. Typically used as generative
networks in GANs.
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Excursion - Unsupervised Learning I
We are dealing with supervised learning in this course:

The answer is known
The cost function is usually a measure of the difference between the known answer
and the given answer

What if we don’t have the answer?
This is called unsupervised learning
Either the answer must be constructed

The principle is: input equals output
Either directly, typically with an autoencoder
Or indirectly (also with AE) but the input is programmatically changed.

Or the answer must assume something
This is probabilistic learning (a distribution is assumed)
Bolzman machines, for example, are stochastic extensions of Hopfield networks

Or there is no answer.
Learns patterns such that they can be reconstructed from parts (patterns are
attractors in feature space).
Hopfield networks (a simple type of RNN)
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Hopfield networks (idea only)
based on Hebbian learning (neurons that fire together wire together)
input is binary typically with values −1 and 1 for simpler math.
no self connection (wii = 0 fixed)

For P inputs xp, weights are set to

wij =
P∑

p=0
xp

i xp
j

The weight matrix is always symmetrical (wij = wji)
Output of a neuron i is

Oi(t) =
{

1 if
∑N

n=0 wijOj(t− 1) > θ

−1 if
∑N

n=0 wijOj(t− 1) < θ

the threshold θ is usually 0
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Autoencoders (idea only) I
The encoder is a CNN which reduces
the input to features in the ’latent’ or
’feature’ space.
The output of the encoder is the
encoded data.
The encoded data is feed into a
decoder network, basically an inverted
CNN using deconvolution.
The output should be a reconstruction
of the input.
Due to compression (the encoder
should reduce the data) the output
will likely be faulty.
Minimization of the reconstruction
error is our cost function.
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Autoencoders (idea only) II

In practice structures
like the U-Net are
usually used.
The decoder should
revert the encoder
Data is feed from
encoder to decoder
to simply, i.e., speed
up, learning
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Autoencoders (idea only) III

The RUNet is an example of the use of an /U-Net based autoencoder to do
superresolution (the reconstruction of a high quality image from a low quality source).
Similar ideas can be used for denoising etc.
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Frameworks for Deep Learning I
There are various frameworks for CNNs for different programming languages.

Tensorflow
Keras
Sonnet
MXNet
GLuon
DL4J
ONNX
Caffe2
Chainer
Microsoft CNTK
PyTorch

We will use PyTorch for this course https://pytorch.org.

https://pytorch.org
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Getting PyTorch I

We have seen from the historical examples that GPUs facilitated deep networks due to
the computational effort required to train them. Most frameworks for deep learning
can work with CPU and GPU.
GPUs implemented more and more general purpose code execution architecture
starting with programmable shaders roughly around 2001. These gave rise to GPUs for
general purpose computing and consequently to frameworks facilitating exactly that.
The currently largest, longest running SDK and API for general purpose GPU
(GPGPU) computing is CUDA (compute unified device architecture) from Nvidia
which was launched in 2006.
Another important one is OpenCL (Open Computing Language) launched in 2009 with
the goal to provide a framework for writing programs which can execute across
different platforms: CPUs, DSPs, FPGAs and GPUs.
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Getting PyTorch II

PyTorch uses CUDA for execution of code on the GPU, specifically cuda toolkit which
must match the installed CUDA version. Here’s how you find the version:

nvidia-smi
:~$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.87.00 Driver Version: 418.87.00 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
............

CUDA Version file
:~$ cat /usr/local/cuda/version.txt
CUDA Version 10.1.243

nvcc --version if the nvidia-cuda-toolkit is installed
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Getting PyTorch III

With this you can get an installation from the PyTorch website in an easy way by
going to: https://pytorch.org/get-started/locally/

https://pytorch.org/get-started/locally/
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Getting PyTorch IV

Normally the PyTorch page will suggest to use Anaconda for installing the cuda and
PyTorch libraries.
Anaconda creates an environment separate from the global python environment where
you can install specific version of libraries without conflict regarding the system
installation.
Anaconda can support different environments which can be switched between easily to
get the development environment desired (this is quite similar to venv (python -m
venv) but with a global (for the user) storage and single command interface. Often
CNNs requires specific package version of cuda and other libraries so this is suggested.
Alternatively pip can be used for the installation which will usually do the install on a
user level.
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Exercise 1 - First PyTorch Code

Exercise: Getting started with PyTorch
Material: Workshop Course Materials
Topics:

Getting started with PyTorch
Install a pre-defined network
Adapt data (image) to the network.
Use data and network (classification)

https://ikosaeder.cosy.sbg.ac.at/dihworkshop/#basics/
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Exercise 2 - Handwritten Digit Detection

Exercise: Handwritten Digit Detection
Material: Workshop Course Materials
Topics:

Create your own (simple) neuronal network.
Train the network.
Evaluate on test data.
Using the PyTorch data loader.

https://ikosaeder.cosy.sbg.ac.at/dihworkshop/#basics/
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Building Blocks of CNNs I

In PyTorch there are a number of layer types of which we will give the most important
here.
The primary layer types are

Convolutional Layers
Linear Layers (fully connected layers)
Activation layers (the activation functions are split from the above layers so that
they can easily be switched out)
Pooling layers
dropout layers
Normalization layers (batch normalization)
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Convolutional Layers I

Dimensions in PyTorch
Dimensionality in PyTorch refers to the layer. That is a 2D convolution layer, can be
of the third dimensions if applied to multiple layers. The 2D simply means that each
layer is two dimensional, an image for example.
The following parameters primarily describe the behaviour of a convolution. Groups is
primarily a PyTorch description, in literature a parallel filter bank would be shown.

padding Extending the region to prevent loss at the signal border (extend by zero,
mirror, continuation).

size The input size of the convolution per layer.
dilation Spread of the filter input.

stride The filter is not taken at every position but every stride positions, can
limit data expansion.
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Convolutional Layers II

groups Affects input dimensions by splitting input into groups (output must of
course also be divisible by the group count).
Example: 4 input layers with a 3x3 size would results in a convolution
with total input size of 3x3x4.
If groups were two it would result in two different convolutions where
each would see only group layers, so two 3x3x2 convolutions.

The following images are take from—A guide to convolution arithmetic for deep
learning by Vincent Dumoulin and Francesco Visin, 2018—which is good read if more
information about convolution is desired.

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285
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Convolutional Layers III

Regular convolution of a 3× 3 filter with stride 1 and dilation 0.

Notice the reduction in size of the output (2× 2 from the 4× 4 input).
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Convolutional Layers IV
Half padding (half the filter size, rounded down) results in a constant signal size.

Full padding (filter size −1) leads to data expansion.
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Convolutional Layers V

Stride is the step size of where the filter is applied, or alternatively the number of filter
outputs skipped in relation to the regular form. Here we have stride 2.

Stride 1: Stride 2:
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Convolutional Layers VI

Dilation increases the ’spread’ of the filter while not increasing it’s size.
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Linear/Fully Connected Layer

The Layers depicted here are fully
connected layers
Each input dimension is connected to each
output dimension (i.e. fully connected).
Nota Bene: In PyTorch the linear layer
expects a 1-dimensional input, in case of
more dimensions in the layer prior
torch.flatten should be used to convert
them to a 1-d signal.
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Activation Layers

Activation functions are split from the regular layers so that they can easily be
switched out.
We have already discussed some of the common activation functions, PyTorch includes
those, variations on them and a lot more besides. Just as a brief overview (in case of
doubt start with the bold ones):

Normalizing activation functions:
[0 : 1] Sigmoid (torch.nn.Sigmoid)
[−1 : 1] tangens hyperbolicus (tanh torch.nn.tanh), a smooth approximation of
the sign functions (torch.nn.softsign)

Thresholding functions:
Positive activation: rectified linear units (torch.nn.ReLU), a leaky version to
prevent zero-gradient (torch.nn.LeakyReLU) and a smooth approximation
(torch.nn.Softplus)
settable threshold: torch.nn.Threshold
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Pooling Layers

Pooling layers are used to reduce the amount of data in the network by grouping
neighbouring activations.
This conveniently also increases the reach of later convolutions (complex cells) and
reduces reliance on specific locations.
The most common used is max pooling, which simply takes the highest activation in a
given pool (torch.nn.MaxPool[1,2,3]D.
The pooling relies on the same parameters as convolutions, size gives the area from
which the maximum is taken, stride gives the step size of how often that area is
sampled from the input signal and dilation can spread the samples of the input area
out.
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Dropout Layers

Dropout layers (torch.nn.Dropout) can help prevent overfitting. This is done by
randomly setting outputs to zero during training:

Works with a probability p. During evaluation this is set to 0.
Each neuron is set to 0 with probability p.
To keep the input vector size intact each output which is not zeroed is scaled (to

1
1−p).
During evaluation p = 0 and no scaling is performed.
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Normalization layers (batch normalization) I

The idea of data normalization is well known (and should be done for input data). The
idea is to conform the features to zero mean and unit standard deviation. With a
random weight initialization of around 0 this puts the outputs into the non-saturated
area of typical activation functions. Which improves adaptation rate as we avoid
low/zero gradients. For input data this has to be done once (the data does not
change).
Batch normalization extends this idea to deeper layers by normalizing the output of a
layer to the same N(0, 1) distribution. The idea here is that internal covariance shift is
reduced.
Internal covariance shift is the change of output distribution due to a shift in the layer
parameters. However, the following layer adapted itself to the previous output
distribution. This has an impact on learning.

https://arxiv.org/abs/1502.03167
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Normalization layers (batch normalization) II

Basically the mean and variance over a batch (with size m) are calculated

µB =
1
m

m∑
i=1

xi,

σ2
B =

1
m

m∑
i=1

(xi − µB)
2.

This is then used to convert the output to the normalized output

x̂i =
xi − µB

σB
.

Just one problem, this totally negates any adaptation of bias and stretching of the
distribution.
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Normalization layers (batch normalization) III

To allow that in an explicit way post normalization the following output is produces by
a batch normalization

yi = γx̂i + β,

where γ and β are learnable parameters.
Batch normalization usually has the following benefits:

Allows for higher learning rates as it prevents fast deterioration to low/zero
gradients
Makes sigmoid-type activation functions more usable (for the same reason)
Has regularization properties which can sometimes have similar effects as dropout.
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Exercise 3 - Handwritten Digit Detection continued

Exercise: Handwritten Digit Detection continued
Material: Workshop Course Materials
Topics:

Implement a CNN from ‘scratch‘ (LeNet5).
Application of different CNN layers.
Optimizer (Adam vs. SGD).

https://ikosaeder.cosy.sbg.ac.at/dihworkshop/#basics/
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Data and Training

We have already seen that data is important for training.
Over fitting can happen.
That is the network can specifically learn each of the data items in the training set
if we have to little data. Generalization suffers.
Learning only a subset.
If the data is biased only a subset of the task will be learned. For example if an
object is always in the lower right side of the image the network might learn to
disregard all other areas, leading to narrow localizations etc. In essence
generalization suffers.
Failure to converge.
If the network is not complex enough to deal with the given data it might fail to
converge, switching from one solution to another. This results in incomplete
learning of the task.
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Data Augmentation I

Data Augmentation can help produces more data from what we have and also help the
network to generalize.

Advantage: reduce chance for over-fitting.
Advantage: help the network to generalize (by location, mirror, zoom etc.).
Disadvantage: Have to generate the images, usually on the CPU.
Consider: Not all augmentation methods can/should be used.

Transformations are found in torchvision.transforms (or
torchaudio.transforms and so on).
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Data Augmentation II
The first option simply to use a sample the required size and crop it from a fixed place.
The sample size is defined by the input of the CNN

Original with central sample
Mucosa (duodenum) VW Bus
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Data Augmentation III
Or samples can be chosen with an offset.
This can be fixed if for a training run of samples with randomized offsets can be used.
This can be useful to strengthen the learning of location invariant patterns.

Sample with Offset
Mucosa (duodenum) VW Bus
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Data Augmentation IV
To greatly increase the number of samples batch sampling can be used. This can be
done either regularly (as shown here) or in a random pattern (i.e. with a random
offset).
This drastically increases the number of samples, care has to be taken to make sure
the sample actually contains what we are learning.

Batch Sampling (grid)
Mucosa (duodenum) VW Bus
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Data Augmentation V
Mirroring along either or both the horizontal and/or vertical axis can be used.
Improves the data but also forcing to learn the other version of non-symmetrical filters.

Mirror vertical + horizontal
Mucosa (duodenum) VW Bus
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Data Augmentation VI
Like mirroring the rotation of the image strengthens the learning of general features (
in this case rotation invariant features.
Unlike mirroring (and rotation with multiples of 90°) this however comes at the cost of
information as certain sample positions are no longer available.

Rotation 45°
Mucosa (duodenum) VW Bus
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Data Augmentation VII
Zooming in or out (scale change) can increases the scale invariance of the network by
forcing the CNN to learn different higher level patterns (complex cells).

Zoom (x2)
Mucosa (duodenum) VW Bus
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Data Augmentation VIII
Shearing or other transformations can potentially enhance the resistance of the CNN
to different distortion types. While they can be used to increase the pool of training
data it should be carefully evaluated if the transformation makes sense to include.

Shearing
Mucosa (duodenum) VW Bus
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Data Augmentation IX

In addition to the spatial transformations there are also a variety of image property
transformations which mainly help to allow to learn information despite different
recording conditions. But some like a transformation in hue can also help to not fixate
filters a any given color layer.
Typical are changes in:

brightness
gamma
contrast
saturation
hue
blur
sharpening
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Data in Training I

We have seen how we can get the most out of the data we have.
But, how do we use the data to:

Train a neural network
Training and designing a neural network
Compare different algorithms
Evaluate a data set

Nota Bene: The nomenclature used here for the different datasets is not well defined
and will vary widely in literature, however the data set used for training the network is
almost always called training set. The meaning of test set on the other hand can have
different meanings.
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Data in Training II

Training a neural network
For the training of a neural network the available data set is split into two parts:

The training set which is used to for training the neural network. That is
repeated forward passes and error back propagation to tune the free parameters of
the network.
The validation set which is used to validate the neural network.

If the network is trained purely on a single data set the end result would almost
certainly be over-fitting. This is the reason that a validation set is used to see if
over-fitting is happening. A typical indicator is that the error rate on the validation set
will increase (beyond the usual fluctuation).
It is of utmost importance that the training set and the validation set are kept
disjointed in every sense except what is supposed to be learned.
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Data in Training III
Example
We want to learn to recognize a VW Bus and the dataset consists of VW Buses and
other cars. If the VW Buses are all red and blue and the other cars are gray and black
it is possible that the NN would learn the colors. If we split the test/validation set such
that the red VW Buses are in the training set and the blue VW Buses are in the
validation set, can be caught easily.

Example
We want to learn to recognize a disease based on samples from patients (multiple per
patient). We should not have images from one patient in the validation as well as the
test set. The NN might learn some other property of that patient and use that instead
of markers for the disease.
The later example also shows a problem here, we might not be aware of what other
distinguishing features are contained in the data. We can only be mindful of the
problem and do the best we can.
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Data in Training IV
How to split the data into training and validation set?

It is difficult to give a general rule on how to choose the number of observations
in each of the three parts, as this depends on the signal-to-noise ratio in the
data and the training sample size. (The Elements of Statistical Learning)

While there is an answer:
For cross-validation stopping we computed the optimal split between training
and validation examples and showed for large m [ed. m is the number of
changeable parameters]that optimally only r′opt = 1√

2m examples should be
used to determine the point of early stopping in order to obtain the best
performance. (Amari et al., Asymptotic statistical theory of overtraining and
cross-validation)

This is of a more theoretical nature, as the authors acknowledge: “Nevertheless note,
that this asymptotic range is often inaccessible in practical applications due to the
limited size of the data sets”.

https://hastie.su.domains/ElemStatLearn/printings/ESLII_print12.pdf
https://doi.org/10.1109/72.623200
https://doi.org/10.1109/72.623200
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Data in Training V
As an Example let us look at refinement learning (more on that later) of the
classification layers of the LeCun net for handwritten number recognition.
Example
The final two layers (the fully connected layers) have a total of m=6300. The optimal
number of image in the validation set would be

1√
2 ∗ 6300

≈ 0.009 = 0.9% .

Assuming a dataset of 1000 images that would be 9 image for the detection of early
stopping. Given that there are 10 different digits this is quite obviously too few in this
case.
Luckily the authors also provided this insight:

… the gain in the generalization error is small if we perform early stopping,
even if we have access to the optimal stopping time.
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Data in Training VI

Quite frequently a 80/20 split is encountered in practice. This is usually not motivated
and it could be speculated that this is done purely because the 80/20 ratio is known
from other topics.

So in practical terms it is suggested to use most of the data for training and a
decent amount for early stopping, i.e., prevention of overfitting.
If possible stick to the r′opt =

1√
2m .

But make sure the early stopping set has a decent coverage over the input domain.
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Data in Training VII

The tasks of
Training and designing a neural network
Compare different algorithms

are very similar in concept. The goal is to train various neural networks and compare
them to find which is best suited to the task.
This means we have to split our data again:

The development set which is used to for training the neural networks.
The benchmark set compare different architectures to see which is best.
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Data in Training VIII

The benchmark set is kept to perform a final evaluation of the different architectures,
the development set is split further.
If training a single neural network it is split into a training set and a validation set as
per the previous discussion.
However, if we do not have a given architecture we want to compare design a network
and again need a sort of benchmark set.

The training set as for a single neural network.
The validation set as for a single neural network.
The test set which is used to do a final validation of the neural network such that
over-fitting of architecture/parameters can be prevented.
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Data in Training IX

The considerations for splitting a test set or benchmark set are similar as for the split
between training set and validation set.

If we call N is the number families of recognizers, hmax the largest complexity
of those families, f the validation set size and g the training set size, the ratio f

g
scales like

√
lnN/hmax. (Guyon, A scaling law for the validation-set training-

set size ratio)
More specifically

f
g =

√
C ln( N

α2 )

hmax
,

where N, hmax, g and f are as above. C = 1.5 is the constant of the Chernoff bound,
alpha is the risk of being wrong (typically 0.05).

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1337
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1337
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Data in Training X

The tricky part is usually to get hmax right, however:
The authors give an approximation for hmax ≈ F

3 , where F is the number of free
parameters, for neural networks trained with back-propagation and early stopping.
Otherwise hmax it is the Vapnik-Chervonenkis dimension (VC-dim):

If the weights come from a finite family (i.e. 32/64 bit representation in computers)
and with sigmoid or sign activation functions, then the VC dimension is at most
hmax ≈ F.
Generally an upper bound is hmax ≈ l F lnF with l the number of layers in the neural
network.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Data in Training XI

A note on the confidence
A frequent problem is the adherence to the α ≈ 0.05%, i.e., the 5% confidence
interval. This is usually the error pro comparison (this case of N comparisons, each to
the optimal solution). A 5% error for each does not mean a 5% error for all.

Example
Example for N = 10 and α = 0.5%. The chance to make at least 1 error in 10
comparisons is

1− (1− α)N = 1− 0.9510 ≈ 1− 0.599 = 0.401

That means that there is a 40% chance to make at least a single error in our 10
comparisons!.
It’s ok to choose α = 0.05 but be aware of the implications!
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Data in Training XII

Evaluate a data set
This is a bit of a separate problem, where the network should be evaluated on the
whole data set while also use it for training.
This is most often used to compare to non-learning algorithms which were evaluated
on the whole dataset.
The problem is that what is used in the evaluation should not be used in training. If
we stick to this, we either can’t train the network or not evaluate it.
The solution is a trade-off (time and computational power). We split the data set into
k folds so that

The folds are disjointed (in the learning sense)
The folds are as big as possible.
Every combination of k− 1 folds is sufficient for training.
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Data in Training XIII

The k folds do not need to be of the same size, but it simplifies things if they are
roughly equal.
The way to perform the evaluation is called k-fold crossvalidation and requires to
train the neural network k times.

D← Dataset
F← partition of D into k folds
for i = 0 to k, Ei ∈ F do

Evaluation Set ← Ei
Development Set ← D ∩ Ei
Train the NNi on the Development Set
Ri ← evaluate E with trained NNi

end for
Full Evaluation ←

⋃k
i=0 Ri
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Training and Parameters I
We have already seen how training looks (gradient descent by back-propagation) and
we have seen how to augment and split data for training.
What is left is how to apply the data in backpropagation.

epoch The whole training set was once used for forward and backwards
propagation.

iteration Usually means one back propagation.
gradient descent / batch gradient descent All entries in the test set are run through

the network, the total error is calculated and then propagated back.
stochastic gradient descent Each subset of the test set is run through the network

(forward propagation), the error is calculated and then propagated back.
This includes mini-bnatch gradient descent.

mini-batch gradient descent A number of entries (the batch size) from the test set is
forward propagated, the error is accumulated. After the whole batch is
done, the combined error is propagated back.
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Training and Parameters II
Some remarks:

Batch gradient descent sometimes refers specifically to the case that the batch
size is equal to the size of the trainings set. In this case mini-batch gradient
descent refers to batch sizes smaller than than.
Testing for early stopping should usually be done based on iterations rather than
epochs (as it reflects the change in the network). Usually it is however a good
idea to not test more than once per epoch to put the available data to good use.
Overfitting by presenting different data is also not a problem.
Gradient descent is usually more computationally expensive than stochastic
gradient descent. The upside is that it is less likely to be caught in a local minima.
That is batch gradient descent usually gives better results but stochastic gradient
descent is faster.
It is a good idea to shuffling the training set for mini-atch gradient descent to
prevent batch overfitting (not useful for batch size equal to training set size
obviously).
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Refinement training I

In practice it is unlikely that a CNN is designed from the ground up as it takes
a lot of time (for training primarily), and
very large mounts of data.

Especially the required amount of data to fit millions of parameters without overfitting
is usually the problem. Remember AlexNet had 14000000 images (14M) and had
serious problems with overfitting.
The most practical approach is usual to refine an existing CNN.
This approach uses an already trained CNN from literature as a base, alleviating the
need to construct the CNN and train it (for the most part).
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Refinement training II

Find a trained CNN which is
as small as possible (but still sufficient for you use case).
trained on similar images than what you use.

Use the trained convolutional layers.
As this is the part that was trained to detect objects in the data.

EITHER Retrain the classification part (usually a/the fully connected layer(s) following the
convolutional layers).

OR Train new classification layer(s) if they existing ones do not fit your requirement
(mostly output size).

Since only a relatively small part of the CNN has to be retrained/refined it is usually
sufficient to have a smaller data set, especially if it can be extended with augmentation.
Care still has to be taken not to overfit the classification layers.
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Exercise 4 - Texture classification

Exercise: Texture classification
Material: Workshop Course Materials
Topics:

Use predefined CNN.
Adapt classification layers.
Write your own data loader.
Refine the network (classification layer).

https://ikosaeder.cosy.sbg.ac.at/dihworkshop/#basics/
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